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Parametric excitation of surface waves via forced vertical oscillation of a container 
filled with fluid (the Faraday instability) is investigated experimentally in a small-depth 
large-aspect-ratio system, with a viscous fluid and with two simultaneous forcing 
frequencies. The asymptotic pattern observed just above the threshold for the first 
instability of the flat surface is found to depend strongly on the frequency ratio and the 
amplitudes and phases of the two sinusoidal components of the driving acceleration. 
Parallel lines, squares, and hexagons are observed. With viscosity 100 cS, these stable 
standing-wave patterns do not exhibit strong sidewall effects, and are found in 
containers of various shapes including an irregular shape. A ‘quasi-pattern’ of 
twelvefold symmetry, analogous to a two-dimensional quasi-crystal, is observed for 
some even/odd frequency ratios. Many of the experimental phenomena can be 
modelled via cubic-order amplitude equations derived from symmetry arguments. 

1. Introduction 
Pattern-forming instabilities occur in a variety of continuum-mechanical situations 

including many hydrodynamic experiments. The behaviour of such patterns is often 
governed by amplitude equations whose form depends on the symmetries of the 
problem but is otherwise largely independent of the hydrodynamic details. These 
equations, and the methodology that accompanies them, provide a common framework 
for the analysis of many otherwise disparate physical systems (cf. the recent reviews of 
Newell, Passot and Lega 1993 and Cross & Hohenberg 1993). The most often studied 
example of such a pattern-forming system is Rayleigh-Bhard convection. 

This article reports experimental investigations of the Faraday instability (Faraday 
1831), in which a container of fluid with a free upper surface is subject to vertical 
oscillation. The system undergoes a pattern-forming instability when the amplitude of 
the vertical forcing exceeds a critical value. All previous theoretical and experimental 
studies of this instability have been based on sinusoidal forcing. Here, the problem is 
generalized to the case of two simultaneous forcing frequencies. 

It appears likely that the results of these experiments can be understood on the basis 
of a nonlinear analysis for a horizontally infinite system, ignoring sidewalls. This leads 
to amplitude equations for certain sets of standing-wave Fourier modes, as for example 
in the theories of Ezerskii et al. (1986), Milner (1991), and Miles (1993). Considerable 
effort will be required, however, to generalize these theories to take into account two 
(or more) forcing frequencies. 

In contrast to most previous experiments, a viscous fluid is used. This ensures that 
patterns are not strongly sensitive to sidewall geometry, as is common for Faraday 
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experiments in low-viscosity fluids such as water. Also, the depth of the fluid layer is 
comparable to the wavelength, while in almost all previous work the depth is much 
larger than the wavelength in order to approach the infinite-depth limit. The small 
depth is intended to suppress long-wavelength instabilities that make it difficult to 
obtain stable homogeneous patterns over wide parameter ranges. 

The article begins with a section on theoretical motivations. A discussion of the 
hydrodynamic stability problem and its symmetries is given, and the forms of 
amplitude equations for spatially homogeneous patterns of standing waves are 
presented. Of particular interest is the concept of bicriticality of wavenumbers and the 
possibility of deliberate selection of geometrically interesting patterns via appropriate 
choices of frequency ratios and other parameters. 

Subsequent sections describe the experimental apparatus and then report and discuss 
the experimental results obtained with single-frequency and two-frequency forcing. In 
the latter case a novel ‘quasi-pattern’ with twelvefold symmetry (Edwards & Fauve 
1992, 1993) is found. The existence of such a structure demonstrates that quasi- 
crystalline order can arise in a purely continuum-mechanical system where spatially 
localized objects such as atoms or tiles do not appear to be a necessary aspect of the 
theoretical treatment. The mathematical analysis of quasi-patterns is similar to that of 
spatially regular patterns such as squares or hexagons, and has features in common 
with density-wave models of quasi-crystals. 

The term ‘quasi-pattern’ refers to a pattern with long-range orientational order but 
no spatial periodicity, thus analogous to a quasi-crystal, but arising spontaneously in 
a nonlinear continuum-mechanical system having the symmetries of the (horizontal) 
plane. The physical system is translationally, rotationally and parity invariant (‘parity’ 
here means with respect to reflections through vertical planes), and the quasi-pattern 
arises via a symmetry-breaking bifurcation with finite critical wavenumber. Excluded 
from this definition are patterns arising in spatially forced or inhomogeneous systems 
and patterns due essentially to effects of sidewall geometry. 

A necessary theoretical complement to this work will be the calculation, directly 
from the governing hydrodynamic equations, of the standing-wave patterns and quasi- 
patterns. The multiple-frequency Faraday experiment presents a unique opportunity to 
completely characterize and quantify the interactions among periodic and quasi- 
periodic patterns in the plane, in a physical and mathematical problem that is simply 
and cleanly defined. Progress in this direction has been made recently by Kumar & 
Tuckerman (1994), and Tuckerman, Kumar & Edwards (1994), although the full 
nonlinear calculation has not yet been attempted. 

2. Theoretical motivations 
2.1. General remarks 

The hydrodynamic problem concerns the stability of the flat free upper surface of an 
incompressible Newtonian fluid, of density p, kinematic viscosity v, and surface tension 
cr, when the container is forced to oscillate vertically. The experiment is depicted 
schematically in figure 1. When the amplitude of the forcing accelerationf(t) exceeds 
a critical threshold, the flat surface becomes unstable and a pattern of standing waves 
appears. 

The simplest and most often studied case is that of a sinusoidal forcing function 
f(t) = acos ( 2 4  for a fluid of small viscosity v. Benjamin & Ursell(1954), starting with 
the ideal fluid equations, showed that in the linear stability problem the surface 
deformation for each standing-wave Fourier mode, having horizontal wavevector 
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FIGURE 1. Basic hydrodynamic problem. A rigid container of depth h and horizontal dimension L (in 
both horizontal directions) is filled with an incompressible Newtonian fluid of density p and kinematic 
viscosity v. The surface tension on the free upper surface is (T. The container is subjected to oscillatory 
vertical accelerationfit). Standing waves of wavelength h appear on the surface when the amplitude 
a of the forcing exceeds a threshold value a,. 

0 2*k, 3*k, 
k 

FIGURE 2. Resonance tongues for the Faraday problem with fir) = acos(2wt), from tabulated 
results for the Mathieu equation, are shown for the infinite-depth capillary dispersion relation 
ui = (cr/p) k3. Dashed lines are inviscid stability boundaries. Solid lines are stability boundaries for 
a small viscosity v, with damping S = 2vkz. The critical forcing acceleration is a, for the subharmonic 
tongue at k,. The band of unstable wavenumbers Ak is shown here for p = (a-u,)/a, = 0.3. 

k = k, t?z + k, t?,, is &t) exp (ik-x) + c.c., where &t) is a real-valued function obeying 
the Mathieu equation 

(1) 

with k = lkl = 27c/h. The natural resonant frequency wo is given by the dispersion 
rela tion 

a,2 b = - wi b+ ak tanh (kh) cos (2wt) 

wi(k) = tanh(kh) gk+-k , [ 21 
where g is the acceleration due to gravity. The infinite-depth limit corresponds to 
tanh(kh)+ 1. When the term gk dominates the sum, the mode is a gravity wave, and 
when (crlp) k3 dominates it is a capillary wave. 

Analysis of the Mathieu equation yields a set of resonance tongues, the first three of 
which are shown in figure 2. A decay rate 6 can be calculated to first order in u by 
integrating the viscous energy dissipation in the eigenmode obtained from the inviscid 
calculation. For infinite depth this decay rate is 6 = 2vk2 (cf. Milner 1991). A 
phenomenological damping term is added to the Mathieu equation, which becomes 

a: = - w: I+ ak cos ( 2 4  g- 263, t. (3) 
5 FLM 278 
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This leads to finite stability thresholds for each tongue, the lowest of which is, in the 
infinite-depth and capillary limits, a, = 8wk, u for the subharmonic response at k, such 
that o,(k,) = o, i.e. half the drive frequency. (In the case of a layer of fluid of finite 
depth, (3) is phenomenological and cannot be derived from the Navier-Stokes 
equations even in the small-viscosity limit. There is an additional integro-differential 
term which contributes to the dissipation like (voJ)”~ k/(coshkh sinh kh).) 

2.2.  The low-viscosity limit and finite-size efects 
Benjamin & Ursell’s linear analysis is simplified by the use of the ideal fluid equations, 
with viscosity treated as a perturbation. The study of pattern selection, however, 
requires a nonlinear analysis (Ezerslui et al. 1986; Milner 1991 ; Miles 1993) which, like 
the linear theory, is considerably simplified if it can be performed for a horizontally 
infinite system, ignoring sidewalls. This motivates experiments with large horizontal 
size L. It might be expected that sidewall effects are negligible when L 9 A, and that 
small-viscosity theory for the infinite plane would accurately predict the selected 
pattern for all such ‘ large aspect-ratio ’ experiments. 

However, for small viscosity the linear problem is very sensitive to the quantization 
imposed by the finite container size L. The instability ocurs near the bottom of the 
(inviscid) subharmonic tongue, where the width Ak of the band of unstable 
wavenumbers is small, going to zero as v + 0. The patterns that develop for small values 
of the bifurcation parameter p = (a-a,) /a ,  will be insensitive to container size and 
shape only when Ak is much larger than x / L ,  the wavenumber separation between 
quantized modes of the container. 

Figure 2 shows neutral curves for both the inviscid case and for small viscosity u. In 
the infinite-depth capillary limits, the width Ak of the band of unstable wavenumbers 
is given by 

which is derived from the width of the subharmonic resonance tongue of the damped 
Mathieu equation (Landau & Lifshitz 1976) and the capillary dispersion relation w: = 
(a/p)k2.  (The above expression is valid for small p;  owing to the shape of the 
subharmonic tongue, Ak for larger p is $ ( ~ / u w ) ~ / ~  a, i.e. proportional to a - (1 +p) and 
not ,u1I2.) 

Previous large-aspect-ratio experiments exhibit the effects of small Ak at low 
viscosity. The observation of Tufillaro, Ramshankar & Gollub (1989) that an 
‘order-disorder’ transition was geometry-dependent even when L was 50 to 100 times 
the wavelength h may be due to the fact that the quantitative values x / L  = 0.39 cm-’ 
and Ak z 0.45 cm-’ (at ,u = 0.07) were similar. The experiments of Christiansen, 
Alstrom & Levinsen (1992) were also performed at parameters where Ak x 0.65 cm-‘ 
(at ,u = 0.08) was near x / L  = 0.37 cm-’ (where L is the diameter), and this may explain 
the observed aspect-ratio dependence of the resulting patterns. 

The container can only be considered ‘large’ when L % x / A k  so that as u+O,  L 
should increase as l /v .  In this feature the low-viscosity Faraday problem differs 
qualitatively from the Rayleigh-Benard problem, which does not display such strong 
finite-size effects. 

Figure 3 is a photograph of a single Bessel mode obtained with pure water. The 
observation of single modes of the container is very common at low viscosities even 
when the aspect ratio L/h is large (cf. Douady & Fauve 1988). 

To study the patterns that would be selected by nonlinearity in a horizontally infinite 
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FIGURE 3. The influence of sidewall geometry at low viscosity. A single standing-wave Bessel mode 
J,, appears on the surface of water in a circular container of 12 cm diameter and depth 0.29 cm 
subjected to sinusoidal vertical vibration at 75 Hz. 

system, and not by container shape and size, it is essential that Ak 4 x / L  so that finite- 
size effects can be safely neglected. By choosing fluids of higher viscosity, this condition 
is satisfied at smaller values of L and p than are possible with low-viscosity fluids such 
as water. 

Previous experiments have shown that finite-size effects are reduced at higher 
viscosity. Douady (1989, 1990) measured stability thresholds a,(w) in a 'one- 
dimensional' experiment (a vessel 6.5 cm x 1.6 cm) at forcing frequencies from 23 to 
42 Hz, for water and for silicone oil (Rhodorsil47V20 at 30 "C, u x 0.18 cm2 s-', p x 
0.94 gm ~ m - ~ ,  n % 20.5 dyn cm-'). In water, stability thresholds showed clearly the 
resonance tongues of individual modes of the container. For silicone oil the threshold 
was a much smoother function of frequency, although resonance tongues were still 
apparent. 

The main qualitative results reported in the present article can be obtained with 
either silicone oil or glycerol/water mixtures. Quantitative measurements were made 
with a mixture of 88% (by weight) glycerol and 12% water, which has a kinematic 
viscosity v x 1.00 cm2 s-' at 23 "C. 

A wider band Ak of unstable wavenumbers could also be achieved by increasing the 
forcing frequency w, although at high frequencies it becomes mechanically difficult to 
achieve a clean vertical oscillation of the container that is free of horizontal and other 
motions. Furthermore, the stability threshold (again assuming low viscosity, infinite 
depth and capillary waves) is 

so that with a given maximum achievable acceleration (experiments are limited by the 
size of the vibration system) it is preferable to increase the product vw - Ak by 
increasing u rather than o, since a, grows only linearly with v but as the 5 power of w. 

2.3. The injinite-depth limit and nearly marginal long-wavelength modes 
Theoretical studies of the Faraday instability often assume that the fluid depth is much 
larger than the pattern wavelength. In the infinite-depth limit the inviscid linear 
stability analysis is simplified because the velocity potential $ is proportional to 

a, = S(p/~r) ' /~  u d I 3  (5) 

5-2 
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exp (kz) rather than to a linear combination of exp (kz) and exp (- kz) as would be 
required to satisfy the impermeability condition a, I/T = 0 on the bottom of the 
container. 

However, in this limit there is no damping mechanism for long-wavelength modes. 
Therefore the reduction of the hydrodynamic problem to a set of amplitude equations 
for critical wavevectors {kj}, = k,, cannot be justified in the infinite-size limit L + 00 

because the longest-wavelength modes allowed by the container (i.e. k = n/L+ 0) 
have arbitrarily small decay rates 2vk2. They must then be considered marginal modes 
in the nonlinear analysis. Any nonlinear mechanism which transfers energy to a small 
wavevector k could destabilize that mode and destroy a pattern of critical wavevectors. 
Thus there is no finite range of the bifurcation parameter ,u for which such amplitude 
equations are valid, because the small-wavevector modes cannot be considered ' slaved ' 
to the critical wavevectors. This is another feature of the Faraday problem 
distinguishing it from the Rayleigh-Benard problem, which has no nearly marginal 
long-wavelength modes. (Except with idealized ' free-slip ' boundary conditions; see 
Zippelius & Siggia 1983. The problem does not arise near threshold for realistic 
boundary conditions, although coupling to long-wavelength modes becomes important 
at higher Rayleigh numbers.) 

Patterns in large-depth Faraday experiments exhibit long-wavelength modulations 
which lead to spatial disorder and chaotic dynamics (Ezerskii et al. 1986). The major 
exceptions are square patterns observed in square or rectangular containers at low 
viscosity (Douady & Fauve 1988), where sidewalls help to stabilize the pattern due to 
the quantization effects previously discussed. 

Incorporation of the marginal modes near k = 0 would complicate the nonlinear 
analysis. In the present series of experiments these modes are suppressed by choosing 
a fluid depth h which is of the same order as the pattern wavelength A. Owing to the 
no-slip condition on the bottom of the container, there is a finite decay rate (due to 
finite shear) associated with all long-wavelength modes. (All modes involve horizontal 
velocity somewhere on the surface and thus between the surface and the bottom there 
is finite shear and thus finite energy dissipation, leading to a decay rate of order v/h2 
in the long-wavelength limit.) The use of amplitude equations which ignore these 
modes is thus valid in some finite neighbourhood of the stability threshold for 
containers of arbitrarily large L. Experimentally we find that with such depths the 
patterns arising near the threshold are often stationary, defect-free and stable over 
relatively wide ranges of the forcing amplitude. 

If the bottom is flat, then regardless of the depth the hydrodynamic problem retains 
the symmetries of the plane (ignoring sidewalls), so that the methods used in the 
nonlinear analysis and the form of the amplitude equations do not change. The critical 
eigenmodes have a more complicated spatial and temporal form, especially at high 
viscosity, but these can be computed numerically as will be described in a related 
publication (Tuckerman et al. 1994). Coefficients appearing in the amplitude equations 
can also be determined numerically or from experimental measurements. 

2.4. Amplitude equations for single-frequency forcing 
The forcing functionf(t) studied in all previous experiments is 

f(t) = a cos ( 2 4 .  (6)  

For low-viscosity fluids it is well established theoretically and experimentally that the 
critical standing-wave modes respond subharmonically, i.e. with frequency w. (This is 
verified, by stroboscopic means, at the higher visosities used in the present study.) 
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Consider a set of N standing-wave modes with critical wavevectors & k,, lk,1 = k,, 
j = 1,. . . , N. The surface deformation can be written as 

N 

~ ( x ,  t )  = &t) A,(t) exp (ik,. XI + C.C. + . . . , (7) 

where & I )  is the temporal eigenfunction, which is real and has the subharmonic 
symmetry & I +  n / w )  = - & I ) ,  i.e. its Floquet myltiplier is - 1 with respect to the period 
n/w of the forcing. (In the low-viscosity limit [ ( t )  is sinusoidal. Without performing a 
Floquet analysis, we nonetheless anticipate that at finite viscosity the use of Floquet 
multipliers to describe the critical eigenmodes will be appropriate even though the 
temporal response is not necessarily purely sinusoidal.) The complex amplitudes A, are 
assumed to vary slowly in time. Amplitude equations up to cubic order will have the 
form (ignoring spatial derivatives) 

,-1 

N 

~ O a t A j  = P A ~ - C ~ ( ~ , ~ ) I A , I ~ A ~ ~  j =  l , * - - , N ,  (8) 
1-1 

where 0,, is the angle between k, and k,. The value of 70 for the low-viscosity theory 
is 1 /(2vk,2). Hereafter t is rescaled such that 7,, = 1 .  The self-interaction coefficient b(0) 
is assumed to be positive and the amplitudes are rescaled such that /3(0) = 1. 

In general, and especially for large L, the amplitudes can also be slowly varying 
functions of the horizontal space coordinates, and (8) will have terms involving 
horizontal amplitude gradients, as for example in the complex Ginzburg-Landau and 
nonlinear Schrodinger equations. Slow space-dependence of the complex amplitudes 
permits analysis of phenomena such as defects and domain walls. In the present paper 
we restrict our attention to the problem of pattern selection, and thus we consider only 
homogeneous patterns. 

The absence of quadratic terms in (8) results from the subharmonic symmetry. 
Because [ ( t )  changes sign during each forcing period, the amplitude equations must be 
sign invariant, since they involve a timescale much larger than the basic period. The 
mechanism which favours hexagons in non-Boussinesq convection (Palm 1960), 
involving small quadratic terms, is thus not available in this case. 

This system of amplitude equations has been studied by many authors (cf. Malomed, 
Nepomnyaschii & Tribelskii 1989; Newel1 & Pomeau 1993; Muller 1993~) .  It is of 
gradient form 3, A, = - a s / a A f ,  with Lyapunov function 

N I N N  

,=I Lj-11-1 

Stable symmetric 2N-fold patterns of any N are possible, depending on the cubic 
coupling function p(0). The value N which minimizes the arithmetic average 
( l / N ) ~ ~ l / 3 ( h / N )  has the deepest minimum of 9 and is thus selected. It 
bifurcates supercritically from the flat surface and each A, has an arbitrary spatial 
phase. (This is true only at cubic order. Certain phase relations are determined by 
higher-order terms; cf. Golubitsky, Swift & Knobloch 1984.) 

In the Faraday problem b(0) can be strongly influenced by nonlinear interactions 
with wavenumbers other than k,. Milner (1991) encountered such an effect which led, 
in his formulation of the small-viscosity nonlinear analysis, to a divergence of p(0) for 
8 = 74.9'. In the usual capillary infinite-depth limits, where &k) = (m/p )k3 ,  this 
involves an interaction with the harmonic response w,(lk,+k,() = 2 0  = 2w0(k,) for 
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2cos(0/2) = 22/s as shown in figure 4. The divergence is toward + 00, so that the 
system tries to avoid pairs of critical wavevectors separated by 74.9'. 

To see the effect of the second wavenumber, note that in figure 4 the interactions 
among A,, A,, A; and B can be described by the equations 

a, B = -EB+ A, A , + .  . . , 
a,A,=pA,-A;B+..., 

where 6 is a small decay rate for B and the quadratic interaction coefficients have been 
set to f 1 by appropriate amplitude scalings. The signs are consistent with conservation 
of energy N IA,I2 + IBIz in the unforced inviscid case where y = E = 0. When E % y > 0, 
B will be slaved to the A modes and can be replaced in (11) by the steady-state 
solution B = A,  A,/€  of (lo), giving 

Thus /?(el,) diverges as 1 / ~  when a + 0 .  Milner considered damping only for the A 
modes, so that 6 was zero. (Physically, the harmonic mode B is also damped by 
viscosity, but Milner did not take this into account.) With finite viscosity 6 is non-zero 
and the resonance at B is not perfectly sharp, so that nearby wavevectors can also 
influence p(0) at nearby angles. 

Milner's calculation of p(0) directly from the hydrodynamic equations allowed him 
to compute 9 for N = 1,2,3 (parallel lines, squares and hexagons). He found that 
squares were the preferred pattern. 

2.5. Arbitrariness of the forcing function 
There is no experimental restriction on the choice of forcing function f(t). Early 
experiments such as Faraday's used mechanical vibration and thus sinusoidal forcing 
was a convenient choice. Modern experiments use electromagnetic vibration exciters, 
and any electronically generated waveform can be used. 

Because the forcing acceleration is always vertical, the symmetries of the (horizontal) 
plane are retained in the linear and nonlinear problems for the primary instability from 
the flat surface, regardless of the choice off(t). An intriguing aspect of the Faraday 
instability is that with two frequencies there exist codimension-2 bifurcations with two 
simultaneously critical wavenumbers k,, and kzc. By rotational invariance each critical 
wavenumber implies a circle of critical wavevectors. Nonlinear interactions between 
wavevectors on the two circles can strongly influence P(0) when 2 cos (0/2) x k,,/k,, 
(cf. Newel1 & Pomeau 1993), and this in turn affects the selection of the asymptotic 
pattern. 

The dispersion relation (2) provides an estimate of the frequency ratio needed to 
produce a desired wavenumber ratio. However, the linear stability problem is not 
insensitive to the superposition of frequencies, so that the two wavenumbers at 
bicriticality are not exactly the individual frequencies (Tuckerman et al. 1994). 
Furthermore, in the nonlinear regime a finite band of wavenumbers is unstable around 
each critical k and thus the ratio k,,/k,, is not precisely fixed. 

The present experimental study is restricted to pairs of frequencies in the ratios of 
small integers. (If the two frequencies are incommensurate, At) is quasi-periodic and no 
Floquet analysis can be used in the linear problem.) The forcing functions are of the 
form 

(1 3) f ( t )  = a[cos (2) cos (mwt) + sin (x) cos (nwt + $)] 
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FIGURE 4. Influence of the harmonic resonance on the cubic coefficient /3(8,). For low-viscosity 
capillary waves, the mode B will resonate spatially and temporally with the quadratic interaction of 
A, and A,  when O,, is such that Ik,+k,( = 2 c o ~ ( 8 ~ ~ / 2 ) k ,  = 22/sk,, corresponding to the harmonic 
response tongue of figure 2. The temporal Floquet multiplier is - 1 for the subharmonic modes A,, 
A,, and + 1 for the harmonic mode B. If B is slightly damped, it can be slaved to the A modes at 
quadratic order, but at cubic order it will strongly affect B(@) at the angle 8 = 74.9'. 

with m and n relatively prime (by choice of w). The angle x serves to mix the two 
amplitudes. The phase of mot is zero by choice of the time origin, and the other phase 
can be chosen within 0 < 6 < 2x/m because (13)  is invariant with respect to $+ 
4 + 2n/m, t --f t + 2pxc/mw for some integer p .  The experimental protocol is to fix the 
parameters m, n, w, q5 and x and to increase a slowly, starting from the stable flat 
surface, to traverse the stability threshold. 

2.6. Amplitude equations for evenlodd forcing 
For single-frequency forcing the exclusion of quadratic terms in the amplitude 
equations is due to the subharmonic symmetry. With two-frequency forcing, quadratic 
terms can arise. Consider for example the case m = 2, n = 1. When x = 0 this 
corresponds to simple sinusoidal forcing f ( t )  = a cos (+t) and the critical mode will 
then have a subharmonic response with [(t + x / w )  = - [ ( I ) .  In this case, sign invariance 
of the amplitude equations results from the fact that there exists a period x / w  for which 
the forcing function is exactly periodic and over which the critical eigenmodes change 
sign. 

For x non-zero and small, the critical eigenmode and its stability threshold are 
perturbed. However, no exact subharmonic symmetry remains becausef(t) is periotic 
only over the longer period 2x/w and not with period n / w .  Over the longer period [ ( t )  
does not change sign. Thus there exists no period for which f ( t )  is exactly periodic and 
over which the critical eigenmodes change sign, and therefore quadratic terms are no 
longer prohibited in the amplitude equations. 

The above argument for m = 2 and n = 1 can be generalized. Whenever an even 
frequency is perturbed by an odd frequeny (m and n are relatively prime), small 
quadratic terms will in general be present. When both frequencies are odd, or when an 
odd frequency is perturbed by an even frequency, the critical modes always change sign 
over one period of the forcing and thus quadratic terms are prohibited. 

The presence of quadratic terms applies only to triad interactions with wavevectors 
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forming equilateral triangles. Thus if N is a multiple of 3 and 0, ,3+N,3  = 2x/3, the 
amplitude equations (8) become 

N 

atAj  =/1Al+aA3*,N13A3*-N/~-cC(O1j)(A1(~Aj, j =  l , . . . ,N,  (14) 
1-1 

where A I f N  = A, for all j .  The system (14) is again of gradient form, having the 
Lyapunov function 

a N  N 

= - p  c I A j 1 2 + T  c A j + N / 3  A: A:+N/3 A3*-N/3) 
3-1 1-1 

L j-11-1 

In the low-viscosity limit, the quadratic coefficient a is to leading order proportional 
to the perturbation amplitude a sin 2, for the case m = 2, n = 1 .  (For rn = 4, n = 5,  a 
is proportional to [a sin xl2; the exponent is determined by a perturbation analysis of 
the Mathieu equation.) Furthermore, it can be shown that there exists a phase q5 = q5,, 
at which a = 0, by noting that @-+#+x is equivalent to x + - x  and thus a+-a; 
therefore the real-valued function a($) must have a zero. 

The case N = 3 recalls the theory of hexagons in non-Boussinesq convection (Palm 
1960). Stable hexagons are predicted in a neighbourhood of ,u = 0.  (See Ciliberto et al. 
1990 or Pampaloni et al. 1992 for recent experimental results concerning hexagons and 
the hexagon/roll transition.) 

The case N = 6 includes the possibility of twelvefold quasi-patterns, in addition to 
lines, hexagons and squares. This was considered by Malomed et al. (1989), who 
concluded that twelvefold quasi-patterns could be stable within this model, for some 
finite parameter ranges. 

2.7. Summary of theoretical motivations 
The theoretical motivations for the present experimental study are as follows. First, it 
appears that the problems posed by the low-viscosity and infinite-depth limits can be 
avoided and that the fluid depth and viscosity can be chosen such that selected patterns 
are amenable to theoretical analysis on the basis of cubic-order amplitude equations 
for finite critical wavevectors, ignoring both long-wavelength modes and finite-size 
effects. Secondly, the deliberate breaking of the subharmonic symmetry with an 
even/odd pair of frequencies introduces quadratic terms into the amplitude equations 
whose coefficient a is proportional to the amplitude of the perturbing (odd) frequency. 
Thirdly, the cubic-order coupling function P(O) may be strongly influenced by the 
presence of a second critical wavenumber, and by adjusting the amplitudes of two 
forcing frequencies, wavenumber bicriticality may be achieved. Even in this bicritical 
situation, where neither forcing amplitude can be considered small, the strength of the 
quadratic terms can still be controlled through the dependence of a on the phase of 
the odd frequency. The parameters which are most interesting from the point of view 
of their effect on the nonlinear coefficients in the amplitude equations, namely, n, m, 

and q5 for the two-frequency forcing f ( t ) ,  are easily adjusted since they enter the 
experiment electronically as part of the waveform generation of f ( t ) .  Thus the two- 
frequency Faraday experiment is a convenient way to study certain fundamental issues 
in pattern formation. 

Although much of our discussion has made use of results from single-frequency 
small-viscosity infinite-depth theory, we do not expect that these results will be directly 
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applicable to the current series of experiments. Coefficients appearing in the amplitude 
equations will be affected by viscosity, depth and multiple-frequency forcing. 

3. Experimental apparatus 
The experimental apparatus consists of a cylindrical container fixed rigidly to the 

armature of a vibration exciter. The container is filled to its brim with a layer of fluid. 
The vibration exciter, which is solidly anchored, oscillates the container vertically 
according to a computer-generated waveform. The resulting standing-wave pattern is 
visualized by reflected light from an axisymmetric light ring centred above the 
container, and images are captured by a video or film camera mounted on axis, looking 
down. 

3.1. Containers 
The container used for quantitative measurements is a cylinder with diameter L = 
12 cm and depth h = 0.29 cm. Pattern wavelengths range from 0.6 to 0.9 cm. Roughness 
of the bottom must be small compared to the depth and the bottom must be level. The 
bottom is black Formica, which when laminated to a rigid aluminium support is flat 
to within f0.003 cm. Sidewalls are aluminium. The empty container with mounting 
hardware and accelerometer weighs 255 gm. 

The brimful1 technique of Benjamin & Scott (1979) and Douady (1989) is used as 
shown in figure 5.  The fluid surface is pinned at a discontinuity of the slope of the 
sidewall. This corner is machined to a fixed height h = 0.29 cm relative to the bottom. 
When the fluid is introduced and the surface attaches itself to the comer, adjustments 
are made to the fluid volume and the levelling of the apparatus such that the resulting 
surface is precisely flat and thus there is no meniscus. This is done by viewing the 
reflected images of laboratory objects or walls; the flat surface becomes a non- 
distorting mirror only when the volume is correct and the apparatus is level. The 
brimful1 technique provides a homogeneous Dirichlet condition on the surface height, 
and it facilitates accurate filling and levelling. The precisely flat surface is also an exact 
trivial solution of the hydrodynamic problem in the presence of vertical forcing and 
thus meniscus waves are not produced. 

A variety of other containers is used to verify that patterns do not depend on 
container shape. Several of these are milled from solid aluminium and then spray- 
painted black, with depths from 3 to 5mm. They include square, hexagonal and 
octagonal geometries and one container whose sidewalls follow the irregular outline of 
a map of France. Horizontal dimensions of these containers range from 5 to 8 cm. 

3.2. Fluih 
All quantitative results presented in this article were obtained with a mixture of 88 % 
(by weight) glycerol and 12 % distilled water, which has density p = 1.22 g cm-2, 
kinematic viscosity v = 1.00 cm2 s-' (at 23 "C), and surface tension CY = 65 dyn cm-'. 
The fluid is prepared in batches of 250 ml on an electronic balance and mixed with a 
magnetic stirrer to prevent entrainment of air. The mixtures are stored in sealed bottles 
to prevent evaporation of water. 

Approximately 33 ml of fluid is required to fill the cylindrical container. A non- 
vibrating glass and Plexiglas cover, which forms a seal with the housing of the vibration 
exciter, isolates the fluid with a volume of air, approximately 21, with which it 
equilibriates after a small gain or loss of water. 
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FIGURE 5. Sidewall boundary condition. The aluminium sidewall has a corner where the slope changes 
discontinuously from 90" to 30". With a glycerol/water mixture the contact line becomes pinned at 
the comer, making possible the preparation of a flat surface with no meniscus. The 30" 'beach' makes 
the fluid fall back into place if the contact line is temporarily disrupted. 

3.3. Mechanical system 
The use of high-viscosity fluids leads to high critical acceleration a,, which necessitates 
a mechanically simple design. Containers are attached rigidly to the armature of an 
electromagnetic vibration exciter (Bruel & Kjaer model 4808). The housing of the 
vibrator is bolted to reinforcing steel which is embedded in a cement block of size 
(30 ~ m ) ~ .  The cement is contiguous with a structural beam of the laboratory building. 
The moving parts of the vibration exciter weigh 160gm. It produces a maximum 
instantaneous force of 112 N. 

The internal design of the vibration exciter uses sheet metal and rubber radial 
supports for the moving armature. This system cannot eliminate all horizontal 
motions. To minimize horizontal motions the cylindrical container is symmetrically 
fabricated so that its centre of mass coincides with its axis and thus the axis of the 
vibration exciter. The accelerometer, which is mounted off-axis, is counterbalanced. 
Horizontal components of acceleration are measured from time to time by mounting 
the accelerometer horizontally. Such components are typically less than 3% of the 
vertical acceleration. 

Mechanical modes of the vibration exciter lead to frequency-dependent amplitude 
and phase errors in its response to the driving signal. These are compensated 
electronically as described below. Such mechanical modes could in principle lead to 
horizontal and other motions which would influence the observed pattern. However, 
the qualitative results are unchanged when another model of vibrator (B & K 4809) is 
substituted. 

To obtain homogeneous patterns it is often necessary to add small weights to the 
edges of the container to tune the mechanical behaviour of the vibrator. Weights 
between 0.2 and 6 g  are placed such that the resulting pattern near the stability 
threshold exhibits homogeneous amplitude over the area of the surface. Without such 
weights the pattern typically arrives first on one side of the container. 

3.4. Waveform generation, data acquisition and control 
The generated signalf(@(t) which controls the vibration exciter is produced digitally in 
real time by a small computer (IBM AT). The program updates this signal 8000 times 
per second by computing 

f ( g ) ( t )  = Q(~)[COS &@)) cos (mot + &)) +sin k ' g ) )  cos (not + $ 9 1  (16) 
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with 15-bit integer arithmetic. A National Instruments AT-MIO-16F-5 multifunction 
1/0 board performs 12-bit conversion to an analog signal which is then low-pass 
filtered (cutoff 500 Hz) to remove the 8 kHz component. A B &K 2712 power amplifier 
drives the vibration exciter. 

Vertical acceleration is measured by a B & K 4393 piezoelectric accelerometer and a 
B & K 2635 calibrated charge amplifier. The signal is converted by the AT-MIO-16F- 
5 to a 12-bit value which is examined by the program that generates the original signal. 
With respect to the same time origin, the measured signalf(m)(t) is processed according 
to the ansatz 

(17) 
where r(t)  is a residual. The measured amplitudes al,"), a',") and phases q52), q5r) are 
determined by real-time numerical integration of the equations 

f (") ( t )  = a r )  cos (mut + #?)) + uLm) cos (nut + q5Lm)) + r(t), 

r(t) = f (" ) ( t )  - a:) cos (mot + #z)) - aim) cos (nut + $Lm))>, (18) 
(19) 
(20) 

This constitutes a two-frequency lock-in technique for known frequencies, which 
obtains phase information relative to a common time origin. The time constant 7 is 
typically set to 3 s. RMS residuals ( r ( t )> l l2  are 3 % or less of the measured amplitudes. 
For efficiency all cosines and sines are found by 12-bit table lookups. Timesteps for 
(19), (20) are 1/4000 s. 

The phase q5g) is made zero (which corresponds to setting the overall time origin) 
by control of the generated phase &), i.e. by integrating 

The phase dim) is made equal to the desired parameter value 4 by control of &), i.e. 

d, aim) = r(t) cos (jut + $Im)), 
7 a, $jm) = - r(t) sin ( ju t  + $jm)), 

j = n, m, 
j = n, m. 

(21) 7a p) = - (m) t m 9 , -  

by integrating 

Data taking is performed with automatic ramping of the generated dg) at 1 'YO per 
minute for fixed ~ ( 9 ) .  At transition boundaries ramping is halted for 10 s or more to 
obtain asymptotic values from the integration of the lock-in equations (19). The 
measured amplitudes are recorded separately; x is not directly measured or controlled 
but is determined by x ( ~ )  = tan-l (uLm)/aE)). 

3.5. Visualization 

Patterns are visualized by light reflected from the fluid surface. A video or 35 mm film 
camera looks directly down on the surface from a distance of from 128 to 165 cm. The 
light source is axisymmetric, so that the visualization introduces no preferred 
horizontal direction. (This isotropy is important for the recognition of the twelvefold 
quasi-pattern, which in ordinary room light appears to be disordered.) An array of 30 
incandescent 15 W lamps is mounted symmetrically on a circle of radius 14.5 cm. To 
eliminate the thirtyfold symmetry this light is passed through an axisymmetric 
translucent plastic diffuser in the form of an annulus of inner radius 14 cm and outer 
radius 18 cm. The lamps and annular diffuser surround the camera. Black limiters are 
used to suppress unwanted reflections. The camera lens is mounted in a light baffle. The 
flat surface appears black since 14 cm is more than twice the container radius and thus 
there is no reflection from the diffuser to the camera. Light transmitted through the 
surface is absorbed by the black bottom of the container. 

Since the distance to the camera is large compared to the container radius, radial 
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effects are small. From a point on the surface, a reflection will reach the camera when 
the surface gradient is between 2.4" and 3.1" from horizontal (for camera distance 
165 cm). These angles are small compared to the maximum gradients in the patterns 
under study, which often exceed 45". In photographs, where exposure times are 
typically 1 s or more, many times the period of the standing waves, white corresponds 
to points whose time-averaged gradient norm is small but non-zero, for example very 
close to a point of maximum deformation. Nodal lines do not have small average 
gradient norm and thus are not distinguished. White line segments in photographs 
correspond to lines of small surface gradient where surface curvature (transverse to the 
line) is oscillating. 

The video camera allows stroboscopic exposure of the CCD array. The triggering 
pulse originates in the computer and is synchronized with the forcing functionf(t). The 
stroboscopic video camera, or an ordinary stroboscope, is used to study the surface in 
slow motion and to determine the response period and thus the Floquet multiplier of 
each pattern. 

The shadowgraph technique is not used as this requires the placement of a lamp or 
mirror between the container and the vibration exciter, and thus a supporting structure 
for the container. Such a support complicates the mechanical system and increases the 
vibrating mass. The maximum achievable acceleration would be reduced, given a 
specified maximum force. Shadowgraphs in surface-wave experiments do not provide 
an approximately linear response (as can be obtained for Rayleigh-Benard convection). 
Light passing through a deformed surface is strongly deflected due to the abrupt 
change in the index of refraction. Both visualization techniques, shadowgraph and 
reflection, are therefore strongly nonlinear. The reflection method is more convenient 
since it separates the visualization from the mechanical system. 

3.6. Temperature control 
Glycerol/water mixtures have temperature-dependent viscosity. For an 88 % mixture, 
temperature control to within f 0.1 K is needed in order to achieve stability thresholds 
that are reproducible to within k1Y0. This is accomplished with a two-stage 
temperature control system consisting of a water bath and low-intensity infrared light. 

The main source of heat arriving at the container is the coil of the vibration exciter. 
About 2 W, which is a small fraction of the power dissipated in the coil, arrives at the 
fluid through the container and its mounting hardware. This is roughly compensated 
by cooling the outside of the stationary glass and Plexiglas cover to 10 "C, so that the 
air inside the cover is cooler than the fluid with which it is in contact. 

Two thermistors (Dale 1T5001-3) are flush-mounted in the container sidewall, 
diametrically opposed, in contact with the fluid. One thermistor is used to control the 
temperature while the other allows an estimation of horizontal temperature gradients. 
The control thermistor is part of a bridge circuit. The analog signal from the bridge is 
converted by the AT-MIO- 16F-5 and examined by proportional-differential control 
software. A relay circuit and an asynchronous D.C. motor coupled to a thyristor 
(commercial 'dimmer switch ') varies the intensity of four reflector bulbs placed 
approximately 50 cm above the container, outside the glass and Plexiglas cover and 
away from the vertical line of sight of the camera. The bulbs are connected in series to 
reduce their operating temperature and thus decrease the ratio of visible to infrared 
light. The light is absorbed by the black bottom of the container, thus heating the fluid. 

This two-stage temperature control system results in a small vertical gradient since 
cooling is accomplished through the fluid surface, i.e. through the air, while heating is 
done via the black bottom of the container. 
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4. Results with single-frequency forcing 
4.1. Squares versus lines 

Using glycerol/water mixtures of varying viscosity, it is found that squares are the 
preferred pattern below v x 0.7 cm2 s-'. For larger viscosities the pattern changes to 
parallel lines as shown in figure 6. The measured dispersion relation is shown in figure 
7 .  The agreement with inviscid theory is good at low frequencies. At higher frequencies 
dissipation becomes more important; its effect is to reduce the critical wavenumber. 

4.2. Lines, defects, circles and spirals 
The behaviour of the lines is similar to that of rolls in convection experiments. In 
particular, they prefer to be aligned normal to the sidewalls, especially at higher forcing 
amplitudes. The result in a circular geometry is a bowed pattern. The wavelength near 
the centre is smaller than near the circumference, and as the forcing amplitude is 
increased this can lead to spontaneous defect-pair generation as in figure 8;  similar 
behaviour in convective rolls at low Prandtl number was studied by Croquette (1989a, 
b). The defects migrate outward and are eventually destroyed near the boundary; 
another defect pair is then produced. 

The usual protocol for these experiments is to increase the forcing amplitude a slowly 
(about 1 YO per minute) to traverse the stability threshold starting from the stable flat 
surface. If instead the threshold is crossed by abruptly increasing a, patterns of circles 
or spirals appear, as in figures 9 and 10. The spiral pattern rotates with a period of 
about one minute. Different experimental runs produce circles or spirals at random. 
Similar effects are also observed in convective patterns (Croquette 1989; Bodenschatz 
et al. 1991). 

4.3, Discussion 
In many low-viscosity experiments a square pattern is observed at or near the primary 
transition. However, when Y +- 0 the container size and shape can strongly influence the 
pattern due to the vanishing of the band of unstable wavenumbers. Thus square 
patterns observed in square or rectangular containers are not conclusive evidence of 
the preferred pattern for the infinite plane. Douady & Fauve (1988), for example, 
working with water, observed patterns that were identifiable as the modes sin (rnnx/L) 
sin (nny/L)  of the square container, with m and n as high as 18, or as superpositions 
of such modes. Tufillaro et al. (1989), working with butanol at higher frequencies, also 
observed square patterns in a square container, but Ak was comparable to n/L. Thus 
it seems likely that the container geometry had some influence on the pattern, even 
though the squares were not aligned with the boundaries. Measurable boundary effects 
persist well into the chaotic regime, as recently reported by Gluckman et al. (1993). 
However, the published evidence generally indicates squares at low viscosity. 

Previously, lines have been observed only in the experiments of Fauve et al. (1992) 
in CO, very close to the liquid-vapour critical temperature. In both glycerol/water and 
CO, the effects of viscous dissipation may be important; near a liquid-vapour critical 
point the viscosity remains finite while the density difference and the surface tension 
vanish, and the observed pattern wavenumber approaches a finite viscous-cutoff value. 
Large viscous dissipation means that these experiments (glycerol/water and CO,) 
cannot be compared to existing low-viscosity theories; at the time of writing there is 
no satisfactory explanation for these patterns of lines. It may be speculated that high 
dissipation changes the geometry of figure 4 by preferentially reducing the wavenumber 
of the harmonic response at B. This would cause 8,, to approach n/2 so that squares 
would be suppressed as the system tries to avoid wavevectors separated by this angle. 
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FIGURE 6.  Single-frequency forcing at high viscosity. A pattern of essentially parallel lines is observed 
with a mixture of 88 YO glycerol and 12 YO water, having v w 1.00 cm2 s-l. The forcing frequency 
2 w / 2 x  is 80 Hz. 

I 

FIGURE 7. Measured dispersion relation (crosses) for lines at viscosity v = 1 .OO f 0.05 cm2 s-' is close 
to the theoretical zero-viscosity result (solid line). The values CT = 65 dyn cm-' and p = 1.22 g m-3 for 
the theoretical curve are literature values for the glycerol/water mixture. 

FIGURE 8. Defect-pair generation in a circular container. The fluid and forcing frequency are the same 
as for figure 6, with slightly higher forcing amplitude. Defect pairs are spontaneously produced near 
the centre and propagate outward. 
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FIGURE 9. Circular pattern after abrupt transition. The flat surface becomes unstable after a rapid 
increase in the forcing acceleration a, giving rise to circular waves. The pattern is a result of the 
circular sidewall. Once created, it persists indefinitely. 

FIGURE 10. Spiral pattern after abrupt transition. Different experimental runs produce circles or 
spirals, apparently at random. The double spiral includes two defects at the boundary. The pattern 
rotates counterclockwise with a period of about one minute. 

Although these patterns are similar to those observed in steady Rayleigh-Benard 
convection, the timescales here are much shorter. Patterns develop in a few seconds and 
the dynamics of defects and long-range correlations involve times of the order of one 
minute. 

5. Results with two-frequency forcing 
5.1. Lines and hexagons 

The case m = 4 and n = 5 ,  for w / 2 x  = 14.6 Hz, has been systematically investigated. 
Figure 11 shows the patterns arising at the primary instability for all values of x and 
q5. Hexagons are apparent over much of the parameter domain. Figure 12 is the phase 
diagram for q5 = 75". 

The patterns indicated in these figures are the first ordered patterns observed after 
the flat surface loses stability. Very near the stability threshold, for p slightly positive, 
the pattern is disordered or is clearly related to the geometry of the container. An 
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FIGURE 1 1. Patterns arising near the primary instability. For each point in this plane, i.e. for fixed $ 
and x of the vertical accelerationflt) = a[cos h) cos ( 4 4  +sin h) cos (5wt + $)] with w / 2 x  = 14.6 Hz, 
instability of the flat surface is obtained by slowly increasing the amplitude a. This figure shows which 
pattern is observed just above the primary transition from the flat surface: L1, lines with k z 
8.8 m-l; Q, twelvefold quasi-pattern; H, hexagons; L2, lines with k x 7.5 cn-l; D, dynamic states 
including breaking of the surface. The quasi-pattern is found only very near the bicriticality (the 
horizontal line) for $ near 75". The figure is compiled from observations on a 16 x 17 grid of ( 6 , ~ )  
values. Thick grey lines indicate regions where two patterns are in competition or are simultaneously 
present near the primary transition. 

F 
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H 
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0 a cos x ( m  s-2) loo 

FIGURE 12. Stability boundaries for $ = 75" in the (a, ,$-plane, showing the primary transition from 
the flat surface (solid line), hysteresis (dashed line), and the pattern which develops just above a = 
a,(x). The instability is produced by fixing x and increasing a as shown by the arrow. Dashed boxes 
correspond to figures 14 and 16. 

ordered pattern is observed only when the nonlinear effects which select the pattern are 
strong enough to compete with boundary effects and inhomogeneities. When p > 0.01, 
an ordered pattern is usually observed. 

For small x, hexagons are not observed at the primary instability. The minimum 
value of x necessary to produce hexagons is a function of q5 as shown by the grey band 
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FIGURE 13. Hexagons produced by two-frequency forcing. The forcing acceleration is f ( t )  = 
a[cos h) cos ( 4 4  + sin (x) cos (5wt + #)I, where w/2n = 14.6 Hz, # = 75" and x = 45". The pattern is 
observed at the primary transition from the flat surface. 
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FIGURE 14. Hexagons-to-lines transition. In (a), the phase diagram is plotted in the plane of the two 
forcing amplitudes, and in (b) the same data are shown but with the horizontal axis p/ [a  sin xI2, where 
p = (a-a,)/a,. Solid circles show the transition from the flat surface F to hexagons H as p is slowly 
increased. Dashed lines show the transition from H to F for decreasing p. Open circles and squares 
delimit the region in which the hexagon-to-lines transition takes place; squares show the final 
disappearance of hexagons as p is increased, while circles show the final disappearance of lines as p 
is decreased. The width of the region of stable hexagons is approximately proportional to the square 
of the amplitude a sin x, as shown by the nearly vertical transition boundary in (b), especially in the 
upper portion of the diagram where the width is much larger than parameter fluctuations due to 
temperature. 

in figure 1 1 .  Near q5 z 15" clear evidence of hexagons is not observed until x is 45" or 
more, whereas for other values of q5 hexagons are more easily produced. 

Figure 13 is a photograph of hexagons for q5 = 75" and x = 45". Figure 14 shows 
measurements of the transitions among the flat surface, hexagons and lines. The 
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FIGURE 15. Hexagons-to-lines transition takes place over a finite range of y where the two 
patterns coexist. 
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FIGURE 16. Transitions among the flat surface F, quasi-pattern Q, hexagons H and lines L1. With 
increasing a, the flat surface becomes unstable at one of the solid lines bounding region F. The 
resulting pattern can be H, Q or L1, depending on x. Hysteresis is shown by the dashed line; in region 
H/F both H and F are stable, and similarly for Q/F. The solid line separating L1 and Q shows the 
transition L1 to Q, with hysteresis shown by the dashed line; in region Q/L1 both Q and L1 are stable. 
The grey band separating H and Q is a region of competition in which the two patterns coexist and/or 
oscillate slowly. Region D indicates a dynamic and/or disordered state; the transition from an 
ordered quasi-pattern to D (the grey band separating Q and D) involves slow, irregular dynamics in 
which the quasi-pattern spontaneously breaks up and reforms. 

hexagons-to-lines transition takes place over a finite range of ,u where the two patterns 
coexist, as in figure 15. 

5.2. Quasi-patterns and solitary waves 
For q5 = 75", a twelvefold quasi-pattern is observed near the wavenumber bicriticality 
at x 65". Figure 16 shows the phase diagram. The intersection of the two solid lines 
is the bicritical point. The quasi-pattern Q can arise via a finite-amplitude transition 
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FIGURE 17. Quasi-pattern of twelvefold symmetry. Photograph of the pattern Q, which has long- 
range order but no spatial periodicity. The long-range order may be seen by viewing the photograph 
at a glancing angle; in certain directions there are parallel lines which traverse the container. The 
parameters are as in figures 12 and 16 with x = 65". 

FIGURE 18. Higher-frequency quasi-pattern. The existence of Q does not depend strongly on 
frequency. Here W / ~ R  = 28 Hz, q5 = 68.4" and x = 72". 

directly from the flat surface F, or alternatively as a secondary transition from either 
hexagons H or lines L1. Figure 17 is a photograph of Q. It is stationary only for a small 
range of p, above which it becomes dynamic and disordered. 

The twelvefold quasi-pattern is observed over a range of frequencies. Figure 18 
shows the result at higher frequency. The existing apparatus does not permit careful 
study at high frequency because the high critical forcing amplitude overheats the 
vibration exciter. The pattern in figure 18 was stationary for several seconds (after 
which the vibration exciter's protection system automatically disconnected it from the 
power amplifier). 
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FIGURE 19. Quasi-pattern in irregular container. The sidewalls foIIow the outline of a map of France. 
The distance Bordeaux-Geneva is approximately 5 cm, and the depth is 3 mm. The irregular sidewall 
does not disrupt the quasi-crystalline order. 

FIGURE 20. Solitary wave. These axisymmetric standing waves are observed near the lower hysteresis 
boundary when most of the quasi-pattern has collapsed to the flat surface. To stabilize these solitary 
waves it is necessary to slightly increase the forcing amplitude at the appropriate moment when one 
or several solitary waves remain. They remain stable with no horizontal velocity for up to five 
minutes. 

To test the sidewall independence of the quasi-pattern, containers of several shapes 
were substituted, including square, hexagonal, octagonal shapes and a container whose 
sidewalls follow the irregular borders of a map of France (figure 19). The 
quasicrystalline order is not disrupted by the irregular shape outside of a small healing 
length near the sidewall. 

Solitary waves as in figure 20 are sometimes observed near the lower boundary of the 
hysteresis loop (the dashed line in figure 16), especially when q5 is a few degrees less than 
75". 
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FIGURE 21. Quasi-pattern observed with frequency ratio 6/7. Similar twelvefold quasi-patterns are 
observed for frequency ratios 417 and 8/9. They are found by experimentally locating the bicritical 
mixing angle x and then slowly varying the phase #, with a fixed just above the stability threshold. 

FIGURE 22. Squares observed with the frequency ratio 315. At this viscosity, the individual frequencies 
each produce lines; mixing the two frequencies results in squares for broad parameter ranges of x 
and #. 

5.3. Other frequency ratios 
Hexagons and twelvefold quasi-patterns are also observed for several even/odd 
frequency combinations, when the smaller frequency is even. Figure 21 exhibits a 
quasi-pattern observed with frequency ratio 6/7, and similar quasi-patterns are 
observed for 4/7 and 8/9. 

With the odd/odd combination 3/5, squares can be observed even though the 
viscosity is high enough to favour lines for each frequency separately. Figure 22 is a 
photograph of such a square pattern. 

5.4. Discussion 
The existence of hexagons as the primary pattern over wide ranges of r$ and 2, as shown 
in figure 11, is consistent with the presence of quadratic terms (triad interactions) in the 
amplitude equations (14) for even/odd forcing. 
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FIGURE 23. Computer-generated quasi-pattern is a linear superposition of twelve wavevectors k,. The 
effect of the experimental visualization is approximated by time-averaging the reflected light that 
would reach the camera from each point on the surface. No fivefold or tenfold symmetry exists, 
despite the apparent pentagons. 

The value q5 = 15' in figure 11, at which hexagons are least easily produced, is 
interpreted as the value q50 for which a = 0. In the case m = 4, n = 5 it can be shown 
that such a value must exist in the interval 0 < q5 < z/2. 

Since a - [asinxI2 and since the theory of hexagons and lines predicts that stable 
hexagons are found in a p-interval of size - a', the absence of hexagons for small x 
is not surprising. If the triad interactions become very weak, they will not be able to 
compete with sidewall boundary effects and unavoidable inhomogeneities in the fluid 
and experimental apparatus, and the band of stable hexagons becomes smaller than the 
fluctuations of the stability threshold due to temperature. Where triad interactions are 
strong enough to result in clearly defined transitions, the size of the p interval for which 
hexagons are stable appears to be proportional to [a  sin^]^ as shown in figure 14. This 
contradicts the expected result for the case m = 4, n = 5,  where a should be 
proportional to [asinxl2 and thus the p-intervals should have width - a2 - [asinXI4. 

The location of the wavenumber bicriticality, indicated by the solid line in figure 1 1, 
is not strongly sensitive to $, varying only by f0.5". This result is in quantitative 
agreement with linear stability computations (Tuckerman et al. 1994). 

Although the experimental quasi-pattern apparently exhibits small pentagons, there 
is no long-range fivefold or tenfold order. To see this, the expected appearance of the 
twelvefold standing-wave surface 

6 

{(x, t )  = A sin (ot) C exp (ik,. x) + C.C. 
j=1 

is computed, taking into account the experimental illumination. At each point where 
V{ is such that light would be reflected into the camera, the point is made white, 
otherwise it is black. The result is time-averaged over the assumed sinusoidal response, 
yielding grey levels, and A is adjusted to match the experimental photographs. The 
resulting figure 23 is to be compared with figures 17, 18 and 19. Even though by 
construction (23) has only twelvefold order, small pentagons are still apparent. 

Observation of the twelvefold quasi-pattern in containers of different shapes 
indicates that it is not due to finite-size effects. This suggests that quasi-patterns of any 
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size could be produced experimentally if sufficiently powerful vibration exciters were 
used. 

The relationship between the quasi-pattern and the solitary waves is not clear. 
For the case of odd/odd forcing, Floquet multipliers other than - 1 do not occur, 

and thus no triad interactions are available to favour hexagons or a twelvefold quasi- 
pattern. The observation of squares is not surprising under such circumstances, but the 
detailed mechanism has not been elucidated. It may be speculated that the 
wavenumbers associated with 5w and with 3w are approximately in the ratio 4 2  and 
thus an interaction like that of figure 4, but with O,, = x/2, may be involved. 

6. Conclusions 
Many patterns are observed with two-frequency parametric forcing. The observation 

of parallel lines at high viscosity is as yet unexplained, but a similar observation in CO, 
near the liquid-vapour critical temperature suggests that high dissipation may be 
responsible. Hexagons are understood to be the result of weak triad interactions 
associated with the absence of the subharmonic symmetry in the case of even/odd 
forcing. The twelvefold quasi-pattern, while it occurs for parameter values near the 
wavenumber bicriticality, is found stroboscopically to be harmonic with respect to the 
total period of the forcing. Thus the role of the second wavenumber, which responds 
subharmonically, is not clear. 

In all of these investigations study has been restricted to the primary instability of 
the flat surface. Some of the results are in agreement with the predictions of cubic-order 
amplitude equations for certain sets of critical wavevectors. The hope is raised that a 
reduction of the hydrodynamic problem can explain these patterns ab initio. This is 
especially interesting for the quasi-pattern since it appears that quasi-crystalline order 
can be completely and quantitatively characterized in this instance. 

The present work motivates further studies with two or more frequencies. A very 
interesting example is the recent work of Muller (1993 b) in which triangles have been 
observed with two- and three-frequency forcing, confirming for the first time the 
prediction of triangles by Golubitsky et al. (1984). More generally, it can be anticipated 
that competition among patterns will be easily arranged by deliberate mixing of 
waveforms. The multiple-frequency Faraday experiment is perhaps the most 
convenient and flexible system with which to study two-dimensional pattern formation 
and dynamics. 
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